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We propose a novel pose-invariant face recognition approach which we call Discriminant Multiple Cou-
pled Latent Subspace framework. It finds the sets of projection directions for different poses such that the
projected images of the same subject in different poses are maximally correlated in the latent space. Dis-
criminant analysis with artificially simulated pose errors in the latent space makes it robust to small pose
errors caused due to a subject’s incorrect pose estimation. We do a comparative analysis of three popular
latent space learning approaches: Partial Least Squares (PLSs), Bilinear Model (BLM) and Canonical Cor-
relational Analysis (CCA) in the proposed coupled latent subspace framework. We experimentally dem-
onstrate that using more than two poses simultaneously with CCA results in better performance. We
report state-of-the-art results for pose-invariant face recognition on CMU PIE and FERET and comparable
results on MultiPIE when using only four fiducial points for alignment and intensity features.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Face recognition is a very challenging problem due to variations
in pose, illumination and expression. Research in this area spans a
wide range of statistical and geometric pattern recognition algo-
rithms for tackling the aforementioned difficulties. Most successful
face recognition approaches require accurate alignment and fea-
ture correspondence between the face images to be compared.
However, in many real-life scenarios, face images appear in differ-
ent poses causing correspondence problem. There has been a large
body of work dealing with pose variation, but still fast and accurate
recognition is a challenge. For a comprehensive and recent survey
of pose invariant face-recognition please refer to [2,1].

We can regard a face image as a vector in RD. The coordinate
axes defined for each pixel will constitute a representation scheme
ðSÞ for the face which is basically the set of column vectors of an
identity matrix in RD space. Corresponding pixels across different
subjects’ faces roughly correspond to the same facial region in
the absence of pose difference. This feature correspondence facili-
tates comparison. In fact, feature correspondence is essential for
comparison based on a learned model. For faces especially, it has
been shown to be crucial [3]. Unfortunately, face images under dif-
ferent poses lose the feature correspondences because of missing
facial regions, unequal dimensions and/or region displacements.
ll rights reserved.
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ma).
Region displacement refers to the same facial region at different
indices in feature vectors (see Fig. 1).

We propose to obtain pose-specific representation schemes Si’s
so that the projection of face vectors onto the appropriate repre-
sentation scheme will lead to correspondence in the common pro-
jected space, which facilitates direct comparison. A representation
scheme can also be regarded as a collection of projection direc-
tions, which we refer to as a projector. Intuitively, projectors are
feature extractors through which the common information from
multiple poses is collected and transferred to a common represen-
tation scheme which we term as latent space. Given a set of projec-
tors Sp and Sq for gallery pose p and probe pose q. Sp and Sq can be
used to project the gallery and probe images to the latent space
where direct comparison can be done due to feature correspon-
dence. The pose-specific projectors and associated latent space ta-
ken together are termed as Correspondence Latent Subspace or CLS
because projection into the latent space provides correspondence.

In a preliminary version of the paper [11], we showed the condi-
tions under which such latent spaces exist and used Partial Least
Square (PLS) [20,21,23,22] to obtain them. PLS has been used before
for face recognition, but it was used either as a feature extraction
tool [27–30] or a classifier [31]. In contrast to the previous ap-
proaches, we used PLS to learn sets of CLS for different pose-pairs
to facilitate pose-invariant face recognition. Our work shows that
linear projection to latent space is an effective solution for pose-
invariant face recognition, which is considered to be a highly non-
linear problem [12,42,25,44]. Working independently, authors in
[26] have also used PLS for learning sets of CLS for different pose-
pairs. However, they have used Gabor features and probabilistic
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Fig. 1. An example showing lack of correspondence due to missing regions and region displacement for pose variation. Black and red blocks indicate region displacement and
missing region, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fusion of local scores for the final decision. Unlike our approach,
they have not considered learning a common CLS for multiple
poses. Surprisingly, our approach with simple intensity features
outperforms previous work and gives state-of-the-art results on
CMU PIE data for pose invariant face recognition and comparable
results on FERET and MultiPIE.

Based on the general correspondence latent space model, the
pose-invariant face recognition problem reduces to estimation of
the gallery and probe pose and obtaining an appropriate CLS for rec-
ognition. We require a training set of face images in gallery and
probe poses to learn CLS for these poses. In this work, we assume
prior knowledge of ground-truth gallery and probe poses. Ground-
truth pose refers to the pose which is reported in the dataset. We
also require training data with face images roughly in gallery and
probe poses. The subject identities in the training and testing data
are different and mutually exclusive. These assumptions are quite
standard for learning based methods and have been used by many
researchers in the past [15,16,42,25,37,43,14,13,9,26].

Our previous, simple PLS based framework [11] worked well for
CMU PIE dataset, which contains face images in a tightly controlled
acquisition scenario that ensures that the ground-truth poses are
very close to the actual poses. But it did not perform as expected
on less controlled and larger datasets, e.g. FERET [17] and MultiPIE
[33]. On one hand, larger gallery size requires more discriminative
features for classification but our previous approach is generative
and does not use label information to learn projectors that are dis-
criminative. On the other hand, a less controlled acquisition sce-
nario gives rise to pose errors, which refers to the situation where
the actual pose of the face image differs from the projector learned
for that pose. Even if the difference is small (generally around
±10�), it can cause loss of correspondence which degrades the per-
formance. Pose errors can be caused due to wrong pose estimation
or head movement at the time of acquisition. The presence of pose
errors is supported from significant differences between the esti-
mated poses [4] and the ground-truth poses [6] for FERET dataset
and our own experiments to estimate pose (Section 4.5).

In order to make our framework practically applicable we need
to account for large gallery sizes and pose errors. Therefore, we ex-
tend our original PLS framework [11] to a two-stage framework for
pose invariant face recognition. The first stage learns pose-specific
representation schemes for gallery/probe pose pairs (which we as-
sume to be known beforehand) using a training set that has face
images in roughly the same poses. The second stage learns discrim-
inative directions in the Correspondence Latent Subspace (CLS)
that has three added advantages:

� Providing an identity based discriminative representation
which is known to outperform generative representation [10].
� Achieving insensitivity to pose errors that are present in real-
life as well as controlled scenarios.
� Exploiting multiple face samples per person in different poses

for supervised learning, which was otherwise not possible due
to modality difference.

We empirically noticed the improvement in recognition accuracy
due to all these factors in the overall performance and report state-
of-the-art pose recognition results for 2D based methods on CMU PIE
and FERET and comparable to best published results on MultiPIE. A
theoretical and empirical comparison between three popular meth-
ods CCA, PLS and BLM for learning the CLS is done under different
scenarios. We also provide our hand-annotated fiducial points for
FERET and MultiPIE publicly available on our website (http://
www.umiacs.umd.edu/bhokaal/data/FERET_MultiPIE_fiducials.tar)
to promote research with these datasets.

This is an extended version of our conference paper [11]. The
original conference version does not include the second stage dis-
criminative learning and the results on FERET and MultiPIE. How-
ever, the conference version had a more detailed explanation of PLS
which we omit here due to space constraints.

The rest of the paper is organized as follows: Section 2 gives a
brief review of related approaches for pose invariant face recogni-
tion, Section 3 discusses some background. Section 4 describes the
proposed approach with PLS and effect of pose errors. Section 5
discusses the two-stage discriminative framework followed by
experimental analysis in Section 6. Finally, we conclude and dis-
cuss salient points of the approach in Section 7.

2. Previous work on pose-invariant face recognition

In [4], the authors proposed a 3D Morphable Model (3DMM) for
faces and used the fact that 3D face information extracted as shape
and texture features remains the same across all poses. Hence, gi-
ven a 2D image they estimated the corresponding 3D model and
matched in the 3D shape and texture space. This method is among
the best performing algorithms for pose invariant face recognition
but it heavily depends on the accurate extraction of 3D information
from the 2D image which itself is a difficult problem and computa-
tionally intensive, making it too slow for real-time application. It
also requires 6–8 fiducial points and 3D face models during train-
ing to learn the 3D shape and texture space. Recently, Generic Elas-
tic Models (GEMs) [38] showed that 3D depth information is not
discriminative for pose invariant face recognition. Thus, a generic
face depth map can be elastically deformed for a given 2D face to
generate the corresponding 3D model leading to a fast version of
3DMM (2–3 s per image). They also extracted all the required 79
fiducial landmarks automatically. The 3D pose normalization
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approach presented in [5] synthesizes a virtual frontal view and
then extracts Local Gabor Binary Patterns (LGBP) [52] to find the
closest match in the gallery. It can handle continuous variation in
pose and has impressive performance on different datasets for
±45� in pitch and ±30� yaw variation. A different 3D geometric ap-
proach is based on stereo matching [35,36] which uses four fiducial
points to obtain the epipolar geometry and dynamic programming
to match corresponding pixels. This approach has shown impres-
sive performance on CMU PIE data set.

Locally Linear Regression or LLR [12] uses face images/patches
to be the bases of the representation scheme, assuming that a face
image/patch in pose p can be faithfully represented as a linear
combination of a set of face images/patches and that the
coefficients of linear combinations remain roughly constant across
different poses. The coefficients of combination were learned using
linear regression. Recently, [42] has reported significantly
improved performance by using Ridge regression to estimate coef-
ficients of a linear combination of a subject’s face image in terms of
training subject’s images in the same pose and comparing the coef-
ficients using normalized correlation. They have used Gabor fea-
tures [41] at five hand-clicked facial points rather than simple
pixel intensity to further enhance the performance. Similarly, the
associate-predict model [44] divides face images into patches
and extracts LBP [39], SIFT [40], Gabor [41] and Learning based
descriptors (LE) [49] as features. Then each patch is associated with
a similar patch from a set of generic face images under approxi-
mately the same pose (associate step). In the prediction step, the
associated patch’s corresponding patch in the gallery pose is used
as a proxy for the original patch for matching purposes. All the
above-mentioned approaches are essentially 2D approximations
of the 3DMM theory which is not always correct. The strength of
the approximation relies heavily on the validity of the key assump-
tion that the coefficients across pose remain almost the same. We
argue that it may not hold for 2D face images unless it is forced
explicitly [11,9]. In [13], the authors realized this shortcoming
and used Canonical Correlational Analysis (CCA) [19] to learn a pair
of subspaces which make the projected images in the latent space
maximally correlated. They also used a region based discriminative
power map for face pixels modeled as a probability distribution
[25]. We also use CCA to learn CLS but we use more than two poses
simultaneously and pool information from multiple poses using
latent space discriminant analysis. In [43], an attempt was made
to learn the patch correspondence between frontal and non-frontal
poses by using a batch version of Lucas–Kanade optical flow algo-
rithm [45]. However, they use only two poses at a time and the
discrimination is not based on label information.

TFA [15] and PLDA [16] use generative models to synthesize
face images of a person across different poses from a common
latent variable which they call Latent Identity Variable or LIV. At
the time of recognition, the images are transformed to the LIV
space using a pose-specific linear transformation and recognition
is carried out in that space. The accuracy of the approach depends
on the validity of the factor model in terms of modeling the prob-
lem and the quality of the learned model parameters. They use the
EM algorithm [46] to learn the model parameters which is prone to
local minima and computationally expensive. Moreover, the
assumption that a single LIV can be used to faithfully generate all
the different poses of a person seems to be over simplified and
may not be true. It becomes evident from poor performance even
for small poses angles with simple intensity features. To improve
the performance, they used 14 hand clicked points on face images
to extract Gabor filter response which are more discriminative
than raw pixels. But accurate location of fiducial-points in non-
frontal images is still an open problem. A related patch-whole ap-
proach was proposed in [14] which tries to model the differential
distribution of a gallery image patch and the whole probe face.
The advantage of this approach lies in the fact that due to a
patch-whole matching scheme it is comparatively robust to small
pose-estimation errors. In the next section we discuss some rele-
vant literature for learning CLS.

3. Background

In this section we discuss the details of Bilinear Model (BLM),
Canonical Correlational Analysis (CCA) and Partial Least Square
(PLS) because we need them later on. All of these methods find a
set of representation schemes which make the projected images
of the same person similar to each other in the latent space. The
definition of similar varies with the method; for instance, CCA
makes them maximally correlated while PLS maximizes the covari-
ance between them. We also draw a theoretical comparison be-
tween these approaches.

Notation: Throughout the paper, superscripts denote indexing
across identity, subscript denotes modality/pose, vectors are de-
noted as straight bold small alphabets (x), variable/constants as
small italic alphabets (a) and matrices as capital italic letters (A).
Hence, the face image of ith person in pose p is denoted as xi

p and
a matrix of face samples in pose p as Xp.

3.1. Bilinear model

Tannenbaum and Freeman [18] proposed a bilinear model for
separating style and content. In pose invariant face recognition, style
corresponds to pose and content corresponds to subject identity.
They suggest methods for learning BLMs and using them in a vari-
ety of tasks, such as identifying the style of a new image with unfa-
miliar content, or generating novel images based on separate
examples of the style and content. However, their approach also
suggests that their content-style models can be used to obtain a
style invariant content representation that can be used for classifi-
cation of a sample in a different style. Following their asymmetric
model, they concatenate the ith subject’s images under M different
modalities/poses ðyi

m : m ¼ 1;2; . . . MÞ to make a long vector yi and
construct matrix Y having columns as yi with i = {1, 2, . . . , N = #
subjects} such that:

Y ¼

y1
1 y2

1 . . . yN
1

y1
2 y2

2 . . . yN
2

..

. ..
. . .

. ..
.

y1
M y2

M . . . yN
M

0
BBBBB@

1
CCCCCA
¼ y1 y2 . . . yN
� �

ð1Þ

Modality matrices Am which can be thought of as different rep-
resentation schemes for a CLS model can be obtained by decom-
posing the matrix Y using SVD as

Y ¼ USVT ¼ ðUSÞVT ¼ ðAÞB ð2Þ

A can be partitioned AT ¼ AT
1 AT

2 . . . AT
M

� �
to give different CLS

representation schemes Am’s where m represents different poses.

3.2. CCA

CCA is a technique that learns a set of M different projectors from
a set of observed content under M different styles. The projections of
different styles of a particular content are maximally correlated in the
projected space. Hence, CCA can be used to learn a common interme-
diate subspace in which projections of different pose images of the
same subject will be highly correlated and recognition can be done
on the basis of the correlation score. Given a set of face images of
N different subjects under M different poses, CCA learns a set of K
dimensional subspaces Wm ¼ wk

m : wk
m 2 RDm; k ¼ 1;2; . . . K

� �
for

m = 1, 2, . . . , M such that [19]:
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C11 C12 . . . C1M

C21 C22 . . . C2M

..

. ..
. . .

. ..
.

CM1 CM2 . . . CMM

0
BBBB@

1
CCCCA

wk
1

wk
2

..

.

wk
M

0
BBBBB@

1
CCCCCA
¼ ð1þ kkÞ

C11 0 . . . 0
0 C22 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . CMM

0
BBBB@

1
CCCCA

wk
1

wk
2

..

.

wk
M

0
BBBBB@

1
CCCCCA
) CW ¼WðI þKÞ ð3Þ

where Dm is the feature dimension of the mth style, Cij ¼ 1
N YiðYjÞT

and K is a diagonal matrix of eigen-values kk, N is the number of
training subjects and Yi is defined in the previous sub-section. Eq.
(3) is a generalized eigenvalue problem which can be solved using
any standard eigensolver. The columns of the projector matrices
Wm will span a linear subspace in modality m. So, when modalities
are different poses we get a set of vectors spanning a linear sub-
space in each pose.

3.3. Partial least squares

Partial Least Square analysis [23,20–22] is a regression model
that differs from Ordinary Least Square regression by first project-
ing the regressors (input) and responses (output) onto a low
dimensional latent linear subspace. The PLS projectors try to max-
imize the covariance between latent scores of regressors and re-
sponses. Hence, we can use PLS to obtain CLS for two different
poses in the same way as BLM and CCA.

There are several variants of PLS analysis based on the objective
function and related constraints to learn the latent space, see [22]
for details on different PLS algorithms. In this paper, we have used
the factor model assumption given in [22,20] to develop intuitions
and a variant of NIPALS given in [21] to learn the projectors.

Following the same conventions as for BLM and CCA, Yp repre-
sents a matrix containing face images in pose p as its columns.
PLS greedily finds vectors wp and wq such that

max
wp ;wq

cov YT
pwp;Y

T
qwq

h i2
� �

s:t: kwpk ¼ kwqk ¼ 1
ð4Þ
3.4. Difference between BLM, PLS and CCA

Although BLM, CCA and PLS try to achieve the same goal but the
difference in their objective functions leads to different properties.
BLM tries to preserve the variance present in different feature
spaces and does not explicitly try to make projected samples sim-
ilar. It is interesting to compare the objective function of PLS with
that of CCA to emphasize the difference between the two. CCA tries
to maximize the correlation between the latent scores

max
wp ;wq

corr YT
pwp;Y

T
qwq

h i2
� �

s:t: kwpk ¼ kwqk ¼ 1
ð5Þ

where

corrða;bÞ ¼ covða;bÞ
varðaÞvarðbÞ ð6Þ

putting the expression from (6) into (4) we get the PLS objective
function as:

max
wp ;wq

varðYT
pwpÞ

h i
corr YT

pwp; Y
T
qwq

� 	h i2
var YT

qwq

� 	h i� �

s:t: kwpk ¼ kwqk ¼ 1
ð7Þ
It is clear from (7) that PLS tries to correlate the latent score of
regressor and response as well as captures the variations present
in the regressor and response space too. CCA only tries to correlate
the latent score hence CCA may fail to generalize well to unseen
testing points and even fails to differentiate between training sam-
ples in the latent space under some restrictive conditions. Let us
consider a simplified case where PLS will succeed and both BLM
and CCA will fail to obtain meaningful directions. Suppose we have
two sets of 3D points X and Y and xj

i and yj
i denote the jth element of

the ith data point in X and Y. Suppose that the first coordinates of xi

and yi are pairwisely equal and the variance of the first coordinate is
very small and insufficient for differentiating different samples. The
second coordinates are correlated with a correlation-coefficient
q 6 1 and the variance present in the second coordinate is w. The
third coordinate is almost uncorrelated and the variance is �w.

8i; x1
i ¼ y1

i ¼ k ) varðX1Þ ¼ varðY1Þ ¼ a� w

corrðX2;Y2Þ ¼ q and varðX2Þ; varðY2Þ � w

corrðX3;Y3Þ � 0 and varðX3Þ; varðY3Þ � w

ð8Þ

Under this situation CCA will give the first coordinate as the
principal direction which projects all the data points in sets X
and Y to a common single point in the latent space, rendering rec-
ognition impossible. BLM will find a direction which is parallel to
the third coordinate, which preserves the inter-set variance but
loses all the correspondence. PLS, however, will opt for the second
coordinate, which preserves variance (discrimination) as well as
maintains correspondence which is crucial for our task of multi-
modal recognition.

One major disadvantage of PLS as compared to CCA and BLM is
that the extension of PLS to more than two modalities leads to a
poor set of projectors and is computationally expensive. So PLS is
not suited for our Discriminant Multiple CLS framework (discussed
later) which requires coupled projectors for multiple poses. On the
other hand, CCA and BLM easily extend to multiple poses following
(1) and (3). However, the objective function and empirical results
in [11] suggest that CCA is better than BLM for cross-modal recog-
nition. Hence, we use CCA for the purpose of learning multiple CLS.

3.5. Linear discriminant analysis

There are two kinds of variations found in data samples: within-
class and between-class variation. Within-class variation refers to
variation present among the samples of the same class and be-
tween-class variation refers to the variation between the samples
from different classes. Ideally, for a classification task we would
like that the within-class variation is minimized and between-class
variation is maximized simultaneously. The quantitative measure
of within-class and between-class variation are the within-class
scatter matrix SW and between-class scatter matrix SB

SW ¼
XC

i¼1

XNc

j¼1

xj
i �mi

� 	
xj

i �mi

� 	T

SB ¼
XC

i¼1

mi �mð Þðmi �mÞT
ð9Þ

Linear discriminant analysis or LDA tries to find a projection matrix
W that maximizes the ratio of SB and SW

Wopt ¼ argmaxW
jWT SBW j
jWT SW Wj

ð10Þ

It leads to the following generalized eigen-value problem

SBwi ¼ kiSW wi i ¼ f1;2; . . . C � 1g ð11Þ

Here, xj
i is the jth sample for the ith class, mi is the ith class mean, m

is the total mean, C is the number of classes, Nc is the number of



Fig. 2. PLS based framework for pose invariant face recognition, Wg and Wp are
learned using PLS and training images in gallery and probe pose.
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samples for class c, ki’s are the generalized eigen-values and
W ¼ ½w1 w2 . . . wC�1 �.

4. PLS based correspondence latent space and pose error

In this section we first discuss the conditions under which CLS
can account for pose difference and explain the PLS based frame-
work for pose invariant face recognition and compare it to previous
work on the CMU PIE dataset. Then we evaluate the performance of
the PLS based framework on larger and less controlled datasets, e.g.
FERET and MultiPIE to show that it does not perform as expected.
Then, we carry out a performance drop study to understand the
reason of poor performance and based on the observations we pro-
pose a novel extension of our original framework to account for the
factors causing performance drop.

4.1. When CLS can account for pose

We can use a CLS framework to find linear projections that map
images taken from two poses into a common subspace. However, a
CLS based framework cannot be expected to lead to effective recog-
nition when such projections do not exist. In this section, we show
some conditions in which projections of images from two poses ex-
ist in which the projected images are perfectly correlated (and in
fact equal). Then we show that these conditions hold for some
interesting examples of pose-invariant face recognition. However,
only the existence of such projections is not sufficient to guarantee
good recognition performance, we must also be able to obtain
them, which could be difficult or even intractable in some cases.
Therefore, we will empirically assess the actual performance of
the proposed approach in Section 6. In a number of cases, images
taken in two poses can be viewed as different, linear transforma-
tions of a single ideal object. Let i and j denote column vectors con-
taining the pixels of face images of the same person in two poses.
We denote by r a matrix (or column vector) that contains an ideal-
ized version of i and j, such that we can write:

i ¼ Ar and j ¼ Br ð12Þ

for some matrices A and B. We would like to know when it will be
possible to find projection directions p1 and p2 that project sets of
images into a 1D space in which these images are coupled. We con-
sider a simpler case in which the projections can be made equal, i.e.
when we can find p1 and p2 such that for any i and j satisfying (12)
we have:

pT
1i ¼ pT

2j) pT
1Ar ¼ pT

2Br

pT
1A ¼ pT

2B
ð13Þ

Eq. (13) can be satisfied if and only if the row spaces of A and B
intersect, as the LHS of the (13) is a linear combination of the rows
of A, while the RHS is a linear combination of the rows of B. We
now consider the problem that arises when comparing two images
of the same 3D scene (face) taken from different viewpoints. This
raises problems of finding a correspondence between pixels in
the two images, as well as accounting for occlusion. To work our
way up to this problem, we first consider the case in which there
exists a one-to-one correspondence between pixels in the image,
with no occlusion.

Permutations: In this case, we can suppose that A is the
identity matrix and B is a permutation matrix, which changes the
location of pixels without altering their intensities. Thus, both of
A and B are full rank, and in fact they have a common row space.
So, there exist p1 and p2 that will project i and j into a space where
they are equal.

Stereo: We now consider a more general problem that is com-
monly solved by stereo matching. Suppose we represent a 3D
object with a triangular mesh. Let r contains the intensities on all
faces of the mesh that appear in either image (We will assume that
each pixel contains the intensity from a single triangle. More real-
istic rendering models could be handled with slightly more com-
plicated reasoning). Then, to generate images appropriately, A
and B will be matrices in which each row contains one 1 and 0
otherwise. A (or B) may contain identical rows, if the same triangle
projects to multiple pixels. The rank of A will be equal to the num-
ber of triangles that create intensities in i, and similarly for B. The
number of columns in both matrices will be equal to the number of
triangles that appear in either image. So their row spaces will
intersect, provided that the sum of their ranks is greater than or
equal to the length of r, which occurs whenever the images contain
projections of any common pixels. As a toy example, we consider a
small 1D stereo pair showing a dot in front of a planar background.
We might have iT = [7825] and jT = [7235]. In this example we
might have rT = [78,235] and

A ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

0
BBB@

1
CCCA B ¼

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBB@

1
CCCA

It can be inferred from the example that row spaces of A and B
intersect hence we expect the CLS framework to work.
4.2. Partial least square based CLS

A PLS based framework learns projectors for every possible gal-
lery-probe pose-pair using a training set of subjects appearing in
similar gallery-probe pose-pairs. Let us denote gallery and probe
poses as g and p respectively. Let Xg (dg � N) and Xp (dp � N) be
the data matrices with columns as mean subtracted image vectors
in pose g and p respectively, where dg and dp are gallery and probe
image dimensions and N is the number of training subjects. PLS
finds projectors Wg (dg � K) and Wp (dg � K) with K equals the num-
ber of PLS factors for pose g and p, such that

Xg ¼WgTg þ Rg

Xp ¼WpTp þ Rp

Tp ¼ DTg þ R

ð14Þ

Here, Tg (K � N) and Tp (K � N) are the latent projections of images
in the CLS, Rg (dg � N), Rp (dp � N) and R (K � N) are residual matri-
ces in appropriate spaces and D is a diagonal matrix that scales the
latent projections of gallery images to make it equal to the probe
image’s projection in the latent space. Fig. 2 depicts the PLS frame-
work pictorially. The detailed step by step algorithm to obtain these
variables is given in [21].
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4.3. PLS on CMU PIE

The PLS based framework is used for pose invariant face recog-
nition on CMU PIE dataset [24] which has been used by many
researchers previously for evaluation. This dataset contains 68 sub-
jects in 13 different poses and 23 different illumination conditions.
We took subject IDs from 1 to 34 for training and the remaining
(35–68) for testing. As we are dealing with pose variation only,
we took all the images in frontal illumination which is illumination
number 12. As a pre-processing step, four fiducial points (both eye’s
centers, nose tip and mouth) were manually annotated and an af-
fine transformation was used to register the faces based on the fidu-
cial points. After all the faces are aligned in corresponding poses we
cropped 48 � 40 facial region. Images were turned into gray-scale
and intensity values mapped between 0 and 1 were used as fea-
tures. The number of PLS factors was set to be 30. Choosing more
than 30 did not improve the performance but choosing less than
30 worsens the performance. The resulting CLS framework was
termed as PLS30, indicating 30 dimensional CLS obtained using
PLS. The accuracy for all possible gallery-probe pairs is given in Ta-
ble 1. For comparing our approach with other published works we
calculated the average of all gallery-probe pairs and the resulting
accuracy is listed in Table 2. Some authors have reported their re-
sults on CMU PIE data with only frontal pose as gallery and a subset
of non-frontal poses as probe. For comparison we also list the gal-
lery and probe setting in Table 2. Ridge + (Intensity/Gabor) refers
to the approach of [42] with raw intensity and Gabor filter response
(with probabilistic local score fusion) at fiducial locations as fea-
ture, respectively. Similarly, PLS-(Holistic/Gabors) refers to the
use of PLS to learn coupled latent space with raw intensity feature
from the whole face and probabilistic fusion of local scores based on
Gabor filter response at fiducial locations, respectively. A simple
comparison clearly reveals that PLS30 approach outperforms all
the methods. It should be noted that the comparison with
3DMM + LGBP [5] is not fair because the results in [5] are reported
on 67 subject gallery whereas, we report on 34 subject gallery.
However, we still include it for the sake of completeness.
4.4. Performance drop on FERET and MultiPIE

In this subsection, we first show the results of PLS based frame-
work on FERET and MultiPIE datasets and discuss the reason behind
the poor performance. Subsequently, we propose our extended two-
stage discriminative approach followed by a detailed analysis of
model parameters on the overall performance.

The performance of PLS based approach on two larger and
less-controlled datasets (FERET and MultiPIE) is shown in Fig. 9a
and b, respectively. From the figures it is evident that performance
Table 1
CMU PIE accuracy using 1-NN matching and PLS with 30 dimensional CLS overall accurac

Probe? c34 c31 c14 c11 c29 c09
Gallery; �60, 0 �45, 15 �45, 0 �30, 0 �15, 0 0, 15

c34 �/� 88.0 94.0 94.0 91.0 88.0
c31 85.0 �/� 100.0 100.0 100.0 88.0
c14 97.0 100.0 �/� 100.0 97.0 91.0
c11 79.0 97.0 100.0 �/� 100.0 88.0
c29 76.0 94.0 100.0 100.0 �/� 100.0
c09 76.0 88.0 91.0 94.0 94.0 �/�
c27 85.0 91.0 97.0 100.0 100.0 100.0
c07 79.0 91.0 97.0 100.0 100.0 97.0
c05 79.0 97.0 97.0 94.0 100.0 94.0
c37 79.0 94.0 100.0 94.0 94.0 88.0
c25 67.0 82.0 76.0 79.0 88.0 88.0
c02 76.0 88.0 88.0 94.0 94.0 88.0
c22 64.0 70.0 64.0 79.0 76.0 67.0
has decreased significantly for both MultiPIE and FERET. The most
obvious reason is the increased number of testing subjects (gallery);
FERET and MultiPIE have almost 3 and 7 times as many testing sub-
jects as compared to CMU PIE, respectively. As the number of testing
subjects increases, we need a discriminative representation for
effective classification. All three, i.e. CCA, BLM and PLS are generative
in nature, hence, the decline in accuracy with increasing number of
testing subject is natural. Secondly, we noticed that some of the faces
in the dataset were off by a few degrees from the reported pose in the
dataset. Especially for FERET, [4] has reported estimated poses
which are very different from the ground-truth poses supplied with
the dataset. Since projectors are learned using training images from
FERET and MultiPIE, this leads to pose difference between the pro-
jectors and images. We term this phenomenon as pose error. It can
occur because of head movement during acquisition or wrong pose
estimation. Suppose, we learn two projectors for a 0�/30� gallery/
probe pose pair. Let us assume that the 30� testing images are not
actually 30� but (30 ± h)� with h 2 [0,15]. For h 6 5, the projectors
and the testing images will have sufficient pixel correspondence.
But for h P 5, we face the loss of correspondence, resulting in poor
performance. Pose errors are inevitable and present in real-life as
well as controlled conditions which is evident from FERET and Mul-
tiPIE. Moreover, due to different facial structures we may expect loss
of correspondence for pose angles greater than 45�. For example,
both the eyes of Asians are visible even at a pose angle of around
60� because of relatively flat facial structure as compared to Euro-
pean or Caucasian for which the second eye becomes partially or to-
tally occluded at 60�. This leads to missing facial regions at large pose
angles which creates loss of correspondence. These pose errors be-
come more frequent and prominent with increasing pose angles.
4.5. Pose estimation

In order to show that the poses provided in the FERET and
MultiPIE databases are inaccurate, we assume that for each subject
the frontal pose is correct and use this information to estimate the
non-frontal poses; the change in the distance between the eyes of
the subject, with respect to the distance in frontal pose, is used to
calculate the new pose. In general, the change in the observed eye
distance can be due to two factors: change in pose and/or change in
the distance between the camera and the face. For the change in
the face-camera position, the distance between the nose and the
lip can be used to correct this motion, if present. For the pose
change, in the two datasets, there is negligible change in yaw
and the Euclidean distance automatically correct for any roll
change, i.e. in-plane rotation; therefore, the Euclidean eye distance
once corrected by the nose-lip distance can be directly used to
measure the pitch pose.
y is 90.08.

c27 c07 c05 c37 c25 c02 c22 Avg
0, 0 0, 0 15, 0 30, 0 45, 0 45, 15 60, 0

91.0 97.0 85.0 88.0 70.0 85.0 61.0 86.2
85.0 91.0 85.0 88.0 76.0 85.0 76.0 88.4
97.0 100.0 91.0 100.0 82.0 91.0 67.0 92.8
100.0 100.0 97.0 97.0 85.0 88.0 67.0 91.6
100.0 100.0 100.0 100.0 85.0 91.0 73.0 93.3
97.0 94.0 91.0 88.0 82.0 79.0 70.0 87.2
�/� 100.0 100.0 100.0 85.0 88.0 79.0 93.9
100.0 �/� 100.0 97.0 85.0 91.0 76.0 92.9
100.0 100.0 �/� 97.0 91.0 91.0 82.0 93.6
94.0 94.0 97.0 �/� 100.0 100.0 94.0 94.1
88.0 91.0 94.0 97.0 �/� 97.0 76.0 85.5
97.0 94.0 100.0 100.0 100.0 �/� 97.0 93.1
82.0 82.0 85.0 91.0 85.0 91.0 �/� 78.4



Table 2
Comparison of PLS with other published work on CMU PIE.

Method Gallery/Probe Accuracy PLS30

Eigenface [37] All/all 16.6 90.1
ELF [37] All/all 66.3 90.1
FaceIt [37] All/all 24.3 90.1
4ptSMD [35] All/all 86.8 90.1
SlantSMD [36] All/all 90.1 90.1
Ridge + Intensity [42] c27/rest all 88.24 93.9
PLS-Holistic [26] c27/rest all 81.44 93.9
Yamada [25] c27/rest all 85.6 93.9
LLR [12] c27/c (05, 07, 09, 11, 37, 29) 94.6 100
PGFR [48] c27/c (05, 37, 25, 22, 29, 11, 14, 34) 86 93.4
Ridge + Gabor [42] c27/rest all 90.9 93.9
PLS-Gabor [26] c27/rest all 89.05 93.9
3DMM + LGBPq [5] c27/c (11, 29, 07, 09, 05, 37) 99.0 100.0

Fig. 3. Schematic diagram to estimate the pose of a non-frontal face using fiducials.

Fig. 4. Box and Whisker plot for pose errors on FERET data for all the nine poses.
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The distance between the two eyes in frontal pose will be
denoted by ee1 and the distance between the nose and the lip by
nl1; similarly for the non-frontal pose to be estimated, the distance
between the eyes is given by ee2 and that between the nose and lip
by nl2. Assuming that the eyes, nose and lip are coplanar, i.e. the
effect due to the nose sticking out is negligible, the new pose h

can be calculated as: h ¼ arccos ee2=nl2
ee1=nl1

� 	
. A pictorial demonstration

of this calculation is shown in Fig. 3.
To measure the poses in FERET and MultiPIE, manually anno-

tated images were used to obtain the fiducial points and the frontal
pose was used to calculate the rest of the non-frontal poses as ex-
plained above. The box and whisker plots for the estimated pose vs.
the ground-truth pose for FERET and MultiPIE are shown in Figs. 4
and 5, respectively. It is clear that, in both databases, there are
inconsistencies between the different subjects at the same pose,
rendering both ground truth data inaccurate. The pose errors are
higher in magnitude and scatter in FERET which is obtained under
unconstrained conditions as compared to MultiPIE.
Fig. 5. Box and Whisker plot for pose errors on MultiPIE data for all the 13 poses
which have only pitch variation from frontal.
4.6. Pose estimation tolerance

Human head pose could be estimated in various ways besides
using fiducial locations. However, it is necessary to get a sense of
robustness and accuracy of the approach for a reliable estimate.
Therefore, we empirically estimate the sensitivity of fiducial-
based-pose-estimation scheme. The accuracy of the estimated pose
depends on the accuracy with which the fiducial points are located.
Therefore, it is necessary to estimate the induced error in the esti-
mated pose due to the errors in the fiducial points location. It is done
by randomly perturbing all four fiducial locations and re-estimating
the pose using the perturbed fiducial locations. The error is defined
as the absolute difference between the perturbed and originally esti-
mated pose. The amount of perturbation for the eyes is a randomly
chosen value between ±(x � ee), i.e. fraction of the distance between
the two eyes (ee). Similarly, nose and lips are perturbed by a
randomly chosen value between ±(x � nl), i.e. the same fraction of
distance between the nose and lips (nl). The variation of average er-
ror over all the subjects and poses with increasing amount of pertur-
bation fraction is shown in Fig. 6. We can see that the error in pose
estimation is increasing with the increment in the fiducial location
error but it is not very high and only after an error of 15% in fiducial
locations, the pose estimation is severely affected.
5. Two-stage discriminative correspondence latent subspace

A discriminative representation approach such as LDA, requires
multiple images per sample to learn the discriminative directions.



Fig. 6. Variation of pose estimation error with the amount of random perturbation
in the fiducial locations.

1102 A. Sharma et al. / Computer Vision and Image Understanding 116 (2012) 1095–1110
We have a training set containing multiple images of a person but
all the images are in different poses. Due to the loss of feature cor-
respondence, we cannot use these multi-pose images directly to
learn LDA directions. Results in [12] show that directly using them
will lead to poor performance. However, we can learn a CLS for
more than two poses simultaneously such that the projections of
different pose images in the latent space have correspondence.
Now, the multiple latent projections of a person can be used with
LDA. Fortunately, using CCA as in (3), we can learn projectors for
multiple poses to get a common CLS for a set of multiple poses.
We empirically found that just using judiciously chosen set of
poses (without LDA in latent space) to learn projectors offers some
improvement over using only two poses. We defer the detailed dis-
cussion of selection of pose-sets and use of LDA to later sections.
The multiple pose approach without LDA in latent space is termed
Multiple CLS or MCLS and with LDA is termed Discriminative MCLS
or DMCLS. The latent space projection xi

l of ith subject in pose p
xi

p

� 	
is given as

xi
l ¼WT

pxi
p ð15Þ

Here, WT
p is the projector for pose p and the subscript l indicates that

xi
l is in latent space. The projections of images in pose p using a pro-

jector for pose p are termed same pose projections. The latent space
LDA offers discrimination based on the identity which is shown to
be effective for classification [10,7].
Fig. 7. Images with pose names, MultiPIE (top row),
The performance drop study also suggests that pose error is an
important factor and needs to be handled for better performance.
To tackle the pose error, we draw motivation from [9,47,8] where
it has been shown that the inclusion of expected variations (those
present in the testing set) in the training set improves the perfor-
mance. Specifically, [9] has shown that using frontal and 30� train-
ing images with LDA improves the performance for 15� testing
images. And, [8] shows that using artificially misaligned images,
created by small random perturbation of fiducial points in frontal
pose, during training with LDA offers robustness to small errors
in fiducial estimation. We combine the two approaches and artifi-
cially simulate pose errors. Unfortunately, creating small pose er-
rors is not as simple as creating fiducial misalignment in frontal
images. We do it by deliberately projecting face images onto adja-
cent pose projectors to obtain adjacent pose projections. The dataset
used has pose angle increments in steps of 15�; therefore, projec-
tion of a 45� image onto 30� and 60� projectors will give adjacent
pose projections for 45�. The set of adjacent projections is given by

X i
l ¼ ~xi

l : ~xi
l ¼WT

q2AðpÞx
i
p

n o
ð16Þ

here, A(p) is the set of adjacent poses for pose p. The use of adjacent
pose projections with LDA is expected to offer some robustness to
small pose errors.

Same and adjacent pose projections have complementary
information and both are important for robust pose-invariant face
recognition. Therefore, we use both of them together as training
samples with LDA to learn a discriminative classifier in the latent
space. We call the resulting framework: Adjacent DMCLS of
ADMCLS. ADMCLS is expected to offer robustness to pose errors
smaller than 15� which is indeed the general range of pose errors ob-
served in real-life as well as controlled scenarios. Apart from provid-
ing robustness to pose error, adjacent projection also provides more
samples per class for better estimation of class mean and covariance.
We empirically found that inclusion of pose error projections dra-
matically improves the performance on FERET and MultiPIE which
is in accordance with [8] and our intuition. It also supports our claim
that performance drop is due to pose errors. The complete flow dia-
gram for the ADMCLS framework is depicted in Fig. 8.
5.1. Hyperparameter exploration

The proposed ADMCLS framework consists of two stages. The
first stage involves learning the CLS and the second stage is learn-
ing the LDA directions using the projections in the latent subspace.
Both stages have several different parameters, which will lead to
different overall frameworks. For the ease of understanding and
readability we summarize the names of different frameworks in
Table 3. In this subsection we discuss the parameters involved
and their effect on overall performance. We also discuss various
FERET (middle row) andCMU PIE (bottom row).



Fig. 8. The flow diagram showing the complete ADMCLS process pictorially for a pair of gallery (�30�) and probe (+45�) pose pair. The gallery and probe along with adjacent
poses constitute the set of poses for learning the CLS (±30�, ±45�, �15�, and +60� for this case). Once the CLS is learned, same and adjacent pose projections (indicated by
different arrow type) are carried out to obtain projected images in the latent subspace. An arrow from pose p images to pose q projector means projection of pose p images on
pose q projector. All the projected images of a particular subject are used as samples in latent space LDA.
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criteria to choose these parameters and their effect on the final
performance.

To study the effect of a parameter, all the others were kept fixed
but the one under study. Then the best values of individual parame-
ters are used in the final framework. The final accuracy of the system
in terms of rank-1 face identification rate is used as the performance
measure to obtain the best value of each parameter. In order to facil-
itate future comparison of our approach, we have fixed the training
subjects to be subject ID 1–34 for CMU PIE, 1–100 for MultiPIE and
1–100 (when arranged according to name) for FERET and made
available the manually annotated fiducial points for FERET and Mul-
tiPIE used in our experiments. Testing is done on the rest of the sub-
jects, i.e. 34, 237 and 100 testing subjects for CMU PIE, MultiPIE and
FERET respectively.

5.1.1. Latent subspace dimension and learning model
The subspace dimension is an important parameter in all the

subspace based methods and plays a critical role in performance.
Too many dimensions can lead to over-fitting and too few to
under-fitting; therefore, this parameter needs to be decided very
carefully. There are some techniques based on the spectral energy
of the eigen-system that can guide the proper selection such as –
choosing a pre-defined ratio of energy to be preserved in the se-
lected number of dimensions – rejecting the directions with lower
eigen-value than a threshold. In the case of CCA, we selected top k
eigen-vectors. We will see later that our final framework does not
require a very careful selection of this parameter and is pretty ro-
bust to its variation. In the case of PLS we are using an iterative
greedy algorithm and the number of dimensions can be selected
by using only those directions which contain some pre-specified
amount of total variation. However, it was observed that beyond
a certain number of dimensions the accuracy remains constant.
For BLM, we can use the spectral energy approach to select the
number of dimensions. The selected number of dimensions of the
Table 3
Framework names based on the components used, the super-script in the name denotes t

Name Model Training set poses

CCA10 CCA Gallery + probe
PLS10 PLS Gallery + probe
BLM20 BLM Gallery + probe
MCLS10 CCA Gallery + probe + intermediate
DMCLS40 CCA All poses
ADMCLS10 CCA Gallery + probe + adjacent
CLS would be indicated as a superscript of the final framework
name.

To keep things simple we have used two poses and 1-NN
matching as the constituents of the final framework and varied
the number of dimensions of CLS. The accuracy is the average accu-
racy for all possible gallery-probe pairs for the same number of CLS
dimensions. There are 15 poses in MultiPIE so there is a total of 210
gallery-probe pose pairs and 72 for FERET (nine poses). The varia-
tion of accuracy for PLS, CCA and BLM on FERET and MultiPIE is
shown in the Fig. 9a and b. It is obvious that different gallery-probe
pairs will achieve the maximum accuracy with different number of
CLS dimensions but we are calculating the average accuracy by
considering the same CLS dimension for all pairs. To show the dif-
ference between our performance measure and the best possible
accuracy obtained by using different CLS dimensions for different
gallery-probe pairs, we calculated the best accuracy for all the pose
pairs and averaged them to get the overall accuracy. These best
accuracies are plotted as dashed horizontal lines in the same figure.

The choice of learning model has significant impact on the over-
all performance. We investigated three different choices for learn-
ing method: CCA, PLS and BLM and found that PLS performed
slightly better than CCA for pose invariant face recognition and
BLM is the worst performing [11]. However, PLS cannot be used
to learn a CLS framework for more than two poses which makes
it useless for the MCLS framework and BLM performs significantly
worse than CCA. So, we used CCA for the cases when more than
two poses are used for training.

Fig. 9 clearly reveals the effect of learning model on face identi-
fication rate. The most important and satisfying observation is that
the maximum possible accuracy is not significantly higher than the
average accuracy justifying our assumption of equal CLS dimension
across all gallery/probe pose pairs. Clearly, BLM performance is
significantly worse than CCA and PLS which is in accordance with
the results obtained in [11]. The performance of CCA and PLS is al-
he CLS dimension.

Projections Classifier CLS dimension

Same pose 1-NN 10
Same pose 1-NN 10
Same pose 1-NN 20
Same pose 1-NN 10
Same + adjacent pose LDA 40
Same + adjacent pose LDA 10



Fig. 9. Result of CLS based recognition using 1-NN classifier on FERET and MultiPIE. (CCA/PLS/BLM)max represents the maximum possible accuracy using different number of
CLS dimensions for all gallery-probe pairs. For MultiPIE, PLSmax and CCAmax overlap and only one of them is visible.
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most similar for MutliPIE and PLS performs better than CCA for
FERET which is also in accordance with [11]. One clear observation
from the figure is that CCA performance is sensitive to CLS dimen-
sion and achieves maxima in a short range. On the other hand, the
performance of BLM and PLS increase till a certain number of
dimensions and then stays nearly constant. This brings out the fact
that CCA is prone to over fitting while BLM and PLS are not (see
Fig. 9).

5.1.2. Set of training poses
This has some effect on the obtained projectors since different

sets of training poses will generate somewhat different projectors
for each pose pair. Moreover, the supervised classifier in the latent
space uses the projections as samples hence, it will have some
bearing on the classifier too. In the case of PLS as the learning mod-
el, we can have only two training poses because of poor learning
for multiple poses but this is not a problem with BLM or CCA.
The set of poses used for training has deep impact on the obtained
CLS performance and further improvements. We indicate the use of
multiple training poses in the framework by preceding CLS by M,
i.e. MCLS. Fig. 10 visually brings out the existence of correspon-
dence between the coupled subspaces using CCA.

The intuition of using more than two training poses can be
understood in terms of robustness to noise offered by additional
poses for CCA. It was pointed out and proved in [34] in a com-
pletely different context of clustering that adding more styles of
data improves noise-robustness which also holds in our case of
pose variation. As explained earlier in Section 3.2, CCA based CLS
is a way of learning correspondence by maximizing correlation.
The correlation between the training images in two different poses
are most likely due to two factors: true correspondence and noise.
We ideally want that the correlation is only due to correspondence.
However, our data always contains some noise in the form of pose
errors and/or inaccurate fiducial location. Presence of noise in the
data can cause spurious correlations leading to false correspon-
dence that will affect the performance. When more than two poses
are used simultaneously, the obtained correlation between these
poses has a higher probability of being due to correspondence be-
cause it is present in all the poses. However, this does not mean
that we should add too many poses because it will decrease the
flexibility of the learning model and lead to under-fitting. Thus,
two poses will lead to over-fitting and too many will cause un-
der-fitting, hence we choose four poses to strike a balance. Note
that, the value four came out of empirical observation.

To evaluate the effect of changing the sets of training poses on
the final framework for a particular gallery-probe pair, we include
poses other than gallery and probe poses to learn CLS. This proce-
dure raises some interesting questions: which poses should be in-
cluded in training set? how many poses should be used? To answer
these questions, we adopt a very simple approach that illustrates
the effect of using multiple training poses. We use three gallery
poses and all the possible probe poses for the selected gallery
poses. For FERET, we choose pose ba(frontal), bd (25�) and bb
(60�) and for MultiPIE, we choose 051(frontal), 190(45�) and
240(90�) as gallery poses. In addition to the gallery and probe we
also select adjacent intermediate poses based on the viewing angle,
i.e. if we have gallery as frontal (0�) and probe as +60� then we take
two additional poses to be +15� and +45�. Similarly, for gallery as
frontal and probe as +30� we take only one additional pose +15�
since it is the only intermediate pose.

Once the latent subspace is learned we use 1-NN for classifica-
tion. The number of CLS dimensions is kept at 17 so the final
frameworks are called as MCLS17. We show the comparison of
CCA based MCLS17 vs. CCA20 in Fig. 11a and b for FERET and Mul-
tiPIE respectively. There are some missing points in the perfor-
mance curves in both figures because an adjacent gallery-probe
pose pair does not have any intermediate pose. The comparison
clearly highlights the improvement offered by using multiple poses
for learning the latent subspace. We generally observe some
improvement with MCLS17 framework for gallery and probe poses
with large pose difference except for few places where it either re-
mained the same or decreased slightly. We also observe that the
improvement is more significant in FERET as compared to MultiPIE
which is due to the fact that MulitPIE dataset has less pose errors
than FERET, as shown in Section 4.5. Therefore, MCLS framework
has more to offer in terms of robustness to pose errors in FERET
as compared to MultiPIE.

The second stage of the framework is learning a supervised clas-
sifier using the latent subspace projections. This stage has two cru-
cial parameters: Set of projections and Classifier. The next two
sections explore their affect on the performance.
5.1.3. Set of projections and classifier
It refers to the combination of the set of latent subspace projec-

tions for a subject and the classifier used for matching. As dis-
cussed earlier, we have two choices for projecting a face image in
the CLS and both contain complementary information which can
be utilized by a classifier for recognition. Since all the databases
used in this paper have pose angles quantized in steps of 15�, the
difference between any two adjacent poses is 15�. In our frame-
work, we do not consider more than 15� pose difference because
they will render the projection meaningless and they do not exist
in real life scenarios.



Fig. 10. Projector bases corresponding to top eigen-values obtained using CCA (first five rows) and PCA [32] (bottom five rows) obtained using 100 subjects from FERET. CCA
projectors are learned using all the poses simultaneously and PCA projectors are learned separately for each pose. Each row shows the projector bases of the pose for equally
indexed eigen-value. Observe that, projector bases are hallucinated face images in different poses and the CCA projector bases look like rotated versions of the same
hallucinated face but there is considerable difference between PCA projectors. This picture visually explains the presence of correlation in the latent CLS space using CCA and
its absence using PCA.
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As mentioned earlier, CCA is used as the learning model for all
the experiments with more than two poses in the training. MultiPIE
has 15 poses and FERET has nine, so the size of the eigen-system for
MultiPIE becomes too big and requires large memory. So, all the
exploratory experiments were done with FERET and conclusions
were used to decide the optimal strategy for MultiPIE. In order to
avoid under-fitting we adopt a simple strategy to select a subset
of poses for training that is based on gallery-probe pair. The
gallery-probe pairs along with the adjacent poses of them are se-
lected as the training set of poses. So, for a +45�/�30� gallery/probe
pair the training set would be ±30�, ±45�, +60�,�15� and for�15�/0�
training pose set is ±15�, 0�, 30�. Adjacent poses are selected to sim-
ulate pose error scenario. We call this variant of DMCLS as Adjacent
Discriminant Multiple Coupled Subspace (ADMCLS). To evaluate
the effect of different latent space projections, we plot the average
accuracy across all 72 gallery/probe pairs in Fig. 12 for the following
settings: 1-NN classifier with two poses denoted by CLS; Intermedi-
ate poses and 1-NN classifier denoted by MCLS; two poses and LDA
denoted by DCLS; all nine poses for FERET and adjacent projections
with LDA denoted by DMCLS and adjacent set of training poses with
adjacent projections and LDA denoted by ADMCLS.

It is clear from the Fig. 12 that ADMCLS performs the best
closely followed by DMCLS, while, CLS is the worst performing ap-
proach with DCLS and MCLS performance being slightly better than
CLS. The use of LDA with adjacent projections did not only increase
the accuracy significantly but also makes the final framework fairly
insensitive to CLS dimension, which eliminates the burden of
determining it by cross-validation. This significant improvement
is due to artificial simulation of pose error scenarios and learning
to effectively neglect such misalignments for classification using
LDA. One more reason contributing to the improvement is the
LDA assumption of similar within-class covariance for all the clas-
ses. In our case, indeed the within-class covariance matrices are al-
most the same because the samples of all the classes in CLS are
obtained using same set of CLS bases and the types of projection
are also the same for all the classes. The recognition rates for all



Fig. 11. Comparison of MCLS17 vs. CCA20 with varying gallery-probe pairs for (a) three gallery poses ba (frontal), bd (40�) and bb (60�) on FERET dataset. (b) Three gallery poses
051(frontal), 190(45�) and 240(90�) on MultiPIE dataset. MCLS17ba indicates that the gallery is pose ba, multiple poses are used during training and CCA is the learning model
with 17 dimensional CLS and 1-NN classifier while CCA20ba indicates that the gallery is pose ba, two poses are used during training and CCA is the learning model with 18
dimensional CLS and 1-NN classifier

Fig. 12. Variation of CLS, MCLS, DCLS, DMCLS, and ADMCLS accuracy with latent
space dimension for all the gallery-probe pairs on FERET.
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the 72 pose pairs with DMCLS40 using all the pose pairs in training
set are given in Table 4. To prove the point that the improvement is
actually due to handling pose errors we also obtain the relative
improvement by ADMCLS40 over CLS22 for all gallery-probe pairs.
The difference is plotted as a heat map for better visualization in
Fig. 13a. From the figure, it is evident that the most significant
improvements are in the cases where either the gallery or the
probe pose is far away from frontal pose. In these cases, the chance
and extent of pose errors and incorrect fiducial locations is most
likely and prominent (see Table 5).

5.2. Computational complexity

It is obvious that learning an ADMCLS with multiple poses offers
various advantages but it also requires some additional computa-
tional cost. The computational bottleneck of the ADMCLS frame-
work is the solution of the generalized eigen-value problem in
(3). The complete generalized eigen-value decomposition of a pair
of N � N square matrices (A,B) is O(N3) but we only need the lead-
ing k eigen-vectors. Therefore, the cost comes down to O(kN2). In
our case, N ¼

P
mDm where, Dm is the dimension of the mth pose
feature space (number of pixels in our experiments). For simplicity,
let us assume that the dimension of each pose feature space is
equal to a constant D. Therefore, N = MD, where M is the number
of coupled poses. Hence, the computational complexity as a func-
tion of the number of coupled poses M and the dimension of fea-
ture space is O(kD2M2).
6. Experimental analysis

In this section we provide the rank-1 indentification rates ob-
tained on CMU PIE, FERET and MultiPIE using best parameters set-
tings and compare our results with prior work on the same
datasets. Please note that, CCA is used as the learning model for
all the methods using more than two poses in training set, for
the reasons explained in previous sections.

6.1. Training and testing protocol

Like any other learning based approach we require training data
to learn the model parameters. We assume access to a training data
that has multiple images of a person under different poses and
ground-truth poses of training as well as testing faces. Although
fiducial points can be used for a better estimation of pose, we
use the ground-truth poses for a fair comparison with previous ap-
proaches. Moreover, automatic pose estimation algorithms and
fiducial detectors always have some error. Therefore, working with
small pose errors reflects performance with automatic pose or
fiducial detector. CMU PIE, FERET and MultiPIE have multiple
images of a person under a fixed set of poses. Hence, we use some
part of the data as training and the rest as testing. We also need to
align the faces under different poses which requires fiducial land-
mark points. In the training phase, we obtain the projectors for all
the possible gallery/probe pose pairs for the required framework,
i.e. ADMCLS, DMCLS, etc. At testing time, we assume that the gal-
lery and probe poses are known and use appropriate projectors
for projection followed by matching. For testing purpose we al-
ways project the images on the same pose projector as per as the
ground-truth poses. For a completely automatic face recognition



Table 4
DMCLS40/ADMCLS40 for all possible gallery-probe pairs on FERET.

Pose bi bh bg bf ba be bd bc bb DMCLS40Avg/
Angle �60� �40� �25� �10� 0� 10� 25� 40� 60� ADMCLS40 Avg

bi �/� 98/98 92/93 88/82 70/77 81/80 79/80 76/69 70/63 81.75/80.25
bh 97/97 �/� 99/99 94/94 80/84 90/87 79/77 71/70 62/60 84.00/83.50
bg 95/96 97/99 �/� 100/100 91/92 98/97 90/92 78/76 68/68 89.63/90.00
bf 83/91 93/95 96/99 �/� 93/97 97/99 95/95 85/84 73/71 89.38/91.37
ba 75/79 77/85 89/94 91/96 �/� 90/95 87/94 81/82 67/70 82.13/86.38
be 86/83 91/88 96/96 98/99 90/99 �/� 99/100 97 84 92.50/93.25
bd 79/78 84/83 90/90 91/95 90/89 98/98 �/� 98 84/86 89.25/89.63
bc 75/70 73/67 77/73 82/79 80/80 92/94 97/97 �/� 95/96 83.88/82.00
bb 71/70 66/60 67/62 67/67 64/65 81/82 82/84 95/95 �/� 74.13/73.12

Fig. 13. Improvement map for (a) using ADMCLS40 over CCA20 for FERET and (b) using ADMCLS25 over CCA18 for MultiPIE. The original accuracies were all between 0 (0%) and
1 (100%). It is evident from the two maps that the amount of improvement is more in FERET as compared to MultiPIE. Also, the improvement is more when either the gallery
or probe pose is far from the frontal view.

Table 5
Comparison of ADMCLS40 with other published works on feret with frontal gallery.

Method Probe pose

bi bh bg bf be bd bc bb Avg

LDA [13] 18.0 55.0 78.0 95.0 90.0 78.0 48.0 24.0 60.8
LLR [13] 45.0 55.0 90.0 93.0 90.0 80.0 54.0 38.0 68.1
CCA [13] 65.0 81.0 93.0 94.0 93.0 89.0 80.0 65.0 82.5
Stack [43] 40.0 67.5 88.5 96.5 94.5 86.0 62.5 38.0 71.7
Yamada [25] 8.5 32.5 74.0 88.0 83.0 54.0 23.5 6.5 46.3
Ridge + Int [42] 67.0 77.0 90.0 91.0 92.0 89.0 78.0 69.0 81.6
DMCLS40 75.0 77.0 89.0 91.0 90.0 87.0 81.0 67.0 82.1
ADMCLS40 79.0 85.0 94.0 96.0 95.0 90.0 82.0 70.0 86.4
3DMM [4] 90.7 95.4 96.4 97.4 99.5 96.9 95.4 94.8 95.8
Ridge + Gab [42] 87.0 96.0 99.0 98.0 96.0 96.0 91.0 78.0 92.6
3DMM-LGBP [5] – 90.5 98.0 98.5 97.5 97.0 91.9 – 95.6
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system, pose and fiducial landmarks should be obtained automat-
ically. However, for experimentation purposes, we assume them to
be known beforehand, a common practice followed in much previ-
ous work [15,16,42,25,37,43,14,13,9,26]. Fortunately, research and
commercial systems have shown impressive performance in
automatic pose and fiducial determination that can be used in con-
junction with our approach to make an automatic pose invariant
face recognition system.

6.2. FERET

This dataset contains 200 subjects in nine different poses span-
ning ±60� view-point. All the images for one person along with the
pose name are shown in Fig. 7. Pre-processing steps similar to CMU
PIE were used except that the final facial region crops are of size
50 � 40 pixels. Subjects 1–100 were chosen as training subjects
and 101–200 as testing. Since, there are nine poses, we have 72
different gallery-probe pairs.

We report the accuracy for FERET data set using two different
variants of DMCLS to bring out the fact that using more than the
required number of poses in training may lead to poor performance.
We report DMCLS based accuracy which uses all the nine poses in
the training and adjacent projection based LDA in latent space
and ADMCLS based accuracy which uses a subset of poses for train-
ing. The number of CLS dimension is indicated as the superscript
and CCA is used as the learning model. Table 4 reports the accuracy



Table 6
MultiPIE accuracy for all possible 210 gallery-probe pairs using ADMCLS25 with 237 testing subjects. The duplet below the pose name indicates the horizontal, vertical angle, i.e.
45, 15 means 45� horizontal and 15� vertical angle.

Prb? 110 120 090 081 080 130 140 051 050 041 190 191 200 010 240 Avg
Gal; �90, 0 �75, 0 �60, 0 �45, 45 �45, 0 �30, 0 �15, 0 0, 0 15, 0 30, 0 45, 0 45, 45 60, 0 75, 0 90, 0

110 �/� 76.4 65.8 34.6 48.5 37.6 33.3 27.4 21.9 31.6 31.2 24.9 35.9 49.4 43.9 37.5
120 78.5 �/� 81.9 48.5 68.8 57.8 54.9 43.9 42.2 44.7 44.7 27.4 59.1 65.0 50.2 51.2
090 67.1 81.9 �/� 59.5 80.2 72.2 51.9 46.0 46.8 54.0 55.3 32.1 64.1 60.8 43.0 54.3
081 38.0 49.8 57.8 �/� 78.5 82.3 73.8 55.7 48.9 52.3 57.0 63.7 49.8 40.1 28.7 51.8
080 55.3 70.9 78.9 76.8 �/� 97.9 93.2 85.7 84.8 82.7 84.0 54.0 72.6 59.9 40.1 69.1
130 39.7 58.6 72.6 84.4 97.0 �/� 96.2 93.7 92.8 90.7 86.9 60.8 68.4 54.9 33.8 68.7
140 30.4 52.7 57.0 73.8 90.7 97.5 �/� 98.7 95.4 92.8 89.0 60.8 64.1 45.6 24.1 64.8
051 27.0 42.2 48.5 58.6 84.8 96.6 99.2 �/� 99.2 96.2 89.0 65.0 57.4 47.7 27.8 62.6
050 25.7 40.9 47.7 54.0 85.2 95.4 97.5 98.7 �/� 98.7 94.9 74.7 75.1 59.5 35.9 65.6
041 26.6 50.2 51.9 52.3 81.0 93.7 95.8 94.9 98.7 �/� 96.6 88.6 80.6 72.6 43.9 68.5
190 27.4 50.2 51.9 53.2 78.9 86.1 89.9 87.8 94.5 97.5 �/� 85.7 90.3 70.0 53.6 67.8
191 22.8 30.8 30.8 65.0 49.8 65.8 60.8 62.4 70.0 87.3 83.1 �/� 77.2 63.3 39.2 53.9
200 36.3 59.1 65.8 52.3 72.2 67.9 63.7 58.6 72.2 84.4 87.3 81.0 �/� 97.0 75.1 64.9
010 44.7 63.7 61.6 43.0 64.6 53.2 47.7 54.0 63.7 77.6 75.5 65.4 95.4 �/� 94.9 60.3
240 43.5 52.3 43.0 26.6 41.8 31.6 28.3 22.4 34.6 45.6 51.1 38.8 79.7 93.2 �/� 42.2

Fig. 14. Comparison of ADMCLS25 with other approaches on MultiPIE dataset with frontal gallery.
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for all possible gallery-probe pairs using the two different variant,
i.e. DMCLS and ADMCLS. The table clearly indicates the advantage
of using ADMCLS over DMCLS when near frontal poses are used
as gallery pose. It also indicates that when extreme poses are gal-
lery then using DMCLS is slightly better than ADMCLS, a possible
explanation is that extreme poses require more regularization than
flexibility. Table 5 reports the comparison between the proposed
approach and past approaches for pose invariant face recognition
on FERET. We report the accuracy obtained using 3DMM [4] ap-
proach to indicate the performance difference between 2D and 3D
approaches. The difference in performance between 2D and 3D ap-
proaches supports the fact that 3D information improves perfor-
mance in pose invariant face recognition.

The results of [42] are shown under two settings: with and
without Gabor features. The authors have extracted Gabor features
at five hand annotated fiducial locations using five scales and eight
orientations resulting in 200 local classifiers which they fuse using
the technique given in [25]. The method involves modeling the
conditional probability of the Gabor response gi of classifier i for
same and different identities, i.e. P(gijsame) and P(gijdif) respec-
tively. Then, Bayes Rule is used to obtain posteriors P(samejgi)
and P(difjgi) and the probability of final classification is the sum
of the posterior probabilities. The inclusion of Gabor features has
improved the accuracy dramatically because they are more dis-
criminative than intensity features. Moreover, using Gabor features
at hand-annotated fiducial landmarks is providing manual corre-
spondence to the learning method. Combining Gabor features with
probabilistic fusion is interesting and worth trying within our
framework. Surprisingly, for CMU PIE our simple PLS based ap-
proach even outperformed the Gabor feature based approach.

6.3. Multi PIE

MultiPIE is an extension of CMU PIE data set containing more sub-
jects and more pose-variation. It has a total 337 subjects photo-
graphed in four different sessions, under 15 different poses, 20
illumination conditions and four different expressions. We only took
neutral expression and frontal lighting images for our experiments.
All the pre-processing steps are the same as in CMU PIE except that
the cropped facial region is 40 � 40 pixels. We took subject ID 1–
100 as training and 101 to 346 as testing, resulting in a total of 237
testing subjects. For MultiPIE we could not obtain MCLS using all
the poses in the training set due to memory problem associated with
large eigen-value problem. Hence, we adopt the ADMCLS approach to
select a subset of training poses and report the accuracy in Table 6.
The MultiPIE data is relatively new and not many results are reported
for pose invariant face recognition on it. We show our results along
with the results of other works in Fig. 14. It should be noted that we
are reporting the results of [42] with pixels intensities as feature.

Interestingly, our 2D approach is better than the 3D GEM [38]
approach. We also observe that our approach is comparable to
the approach in [42] for small pose differences but the difference
increases with the pose angle. This might be due to the fact they
report their result under frontal gallery and non-frontal probe only,
giving them the opportunity to better tune the parameter but we
report the results under general pose variation and do not optimize
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our method for frontal gallery and non-frontal pose. Moreover, we
have outperformed [42] on both CMU PIE and FERET by large mar-
gins without optimizing for the case of frontal gallery images.
7. Conclusion and discussion

We have proposed a generic Discriminative Coupled Latent
Subspace based method for pose invariant face recognition. The
learned set of coupled subspaces projects the images of the same
person under different poses to close locations in the latent space,
making recognition possible using a simple 1-NN or discriminative
learning. We have discussed the conditions for such projection
directions to exist and perform accurately. We further exploit the
property of CCA to couple more than two subspaces corresponding
to different poses and show that judiciously using multiple poses
to learn the coupled subspace performs better than using just
two poses. That is because information from multiple views is
more consistent and robust to noise (pose errors and incorrect
fiducials) than just two views. Multiple coupled subspaces also
provide us with the opportunity to generate multiple samples of
a person in the latent subspace which can be used with LDA to en-
code discriminative information.

We have provided empirical evidence that pose-invariant-face
recognition suffers from pose errors even under controlled settings,
leading to poor performance. We tackle the pose error problem by
artificially simulating pose error scenarios via adjacent-pose-latent
projection. The latent projections obtained by projecting the images
of a person under different poses on the same and adjacent pose pro-
jectors are used with LDA to effectively avoid the drop in perfor-
mance due to small pose errors. The proposed approach has
achieved state-of-the-art results on CMU PIE and FERET when four
fiducial points are used with simple intensity features and compara-
ble results on MultiPIE.

We experiment with pose variation only and illumination is
considered to be constant. However, owing to the independent
block structure of the overall framework, it can be easily extended
to handle lighting variations by using some illumination invariant
representation such as: The Self Quotient Image [50] and Oriented
gradient [51]. Moreover, Gabor features extracted at specific fidu-
cial locations can be used to improve the performance further as
in [42,15,16,26,5]. The coupled subspaces are learned in generative
manner and only after projection on these subspaces, label infor-
mation is used with LDA. The method could be improved by learn-
ing a discriminative coupled subspace directly. Learning such a
subspace and using it for pose and lighting invariant face recogni-
tion is one of our future endeavors.
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